Effect of Thermomechanical Working on the Microstructure and Mechanical Properties of Hot Pressed Superalloy Inconel 718

نویسندگان

  • Andrzej Nowotnik
  • Jan Sieniawski
چکیده

Experimental results on hot deformation and dynamic structural processes of nickel based alloy Inconel 718 are reviewed. The focus is the analysis of dynamic precipitation processes which operate during hot deformation of these materials at elevated temperatures. Hot compression tests were performed on the solution treated precipitation hardenable nickel based superalloy Inconel 718 at 720-1150°C with a constant true strain rates of 10 -4 and 4x10 -4 s -1 . True stress true strain curves and microstructure analysis of the deformed nickel based superalloy is presented. The properties and dynamic behaviour are explained through observation of the microstructure using standard optical, scanning and transmission electron microscopy. Structural observations of solution treated Inconel 718 deformed at high temperatures, reveal non uniform deformation effects. The distribution of niobium-rich carbides were affected by localized flow within the strain range investigated at relatively low deformation temperatures 720 850°C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Tool Performance With Nanocrystalline Multilayer Coatings on the Machinability of Superalloy Inconel 718

In this paper, the performance of the cutting tool with nanocrystalline multilayer coatings (TiN+TiAlN) for machining of superalloy Inconel 718 in the dry and wet conditions was studied. The multi layer TiN and TiAlN with nanocrystalline structure was applied by physical vapor deposition technique (arc evaporation) on the WC-Co inserts. The results of the ball on disc wear test and the machinin...

متن کامل

Flow Stress Modeling in a γ-γ/ Cobalt Base Superalloy by Using the Hyperbolic Sine Equation and ANN Method

The new class of wrought γ-γ/ Co-base superalloys, which are based on Co-Al-W system,  was developed by conventional hot working routes with a high volume fraction of γ/ precipitates and good mechanical properties. The aim of the present study was to predict the flow stress and hot deformation modeling of a novel γ-γ/ Co-base superalloy. The hot compression test...

متن کامل

Effect of Cooling Rate on Microstructural Development in Alloy 71 8 A

A variety of cast pyrometR 718 alloy microstructures result from processing of different diameters of industrial scale ingots for producing superalloy forgings used in aircraft turbine engine applications. The hot workability of these cast alloys will significantly depend on the cast microstructure. The current study is focussed on understanding the evolution of the cast microstructure during V...

متن کامل

Characterization of strain induced precipitation in Inconel 718 superalloy

Inconel 718 is a Ni-Cr-Fe superalloy which presents excellent mechanical properties at high temperatures, as well as good corrosion resistance and weldability. These characteristics can be optimized with an appropriate control of microstructural features such as grain size and precipitation. Precipitates of different nature can form in these alloys, i.e. γ’’ (a metastable metallic compound Ni3N...

متن کامل

Transmission Electron Microscopy Sample Preparation of INCONEL 738 Nickel-Base Superalloy

Size, shape, volume fraction and distribution of embedded g/ phase in g phase has direct effect on strength of INCONEL alloy. Microstructure parameters of INCONEL phases are quantified from microstructure images using transmission electron microscopy (TEM). Different TEM sample preparation techniques were used to study INCONEL 738 alloy microstructure for transmission electron micros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010